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Abstract

A canonical finding from earlier research is that the cross-sectional variance of income in-

creases sharply with age (Deaton and Paxson, 1994). However, the trend in this age profile is

not separately identified from time and cohort trends. Conventional methods solve this iden-

tification problem by ruling out “time effects.” This strong assumption is rejected by the data.

We propose a new proxy variable machine learning approach to disentangle age, time and

cohort effects. Using this method, we estimate a significantly smaller slope of the age profile

of income variance for the US than conventional methods, as well as less erratic slopes for 11

other countries.
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1 Introduction

The amount of uninsurable income risk individuals face over the life-cycle is an important deter-

minant of a wide variety of macroeconomic outcomes such as precautionary savings, the average

marginal propensity to consume, and the value of social insurance programs. Seminal work by

Deaton and Paxson (1994) argued that the cross-sectional variance of income increases sharply

with age in a number of countries. Subsequent work by Storesletten, Telmer, and Yaron (2004) and

Guvenen et al. (2021) (among others) constructed similar estimates for the US. A large literature

on heterogeneous agent models in macroeconomics has used these statistics to estimate the size

and persistence of uninsurable income risk. A steeply upward-sloping profile of income variance

as individuals age is interpreted as being caused by an accumulation of large and very persistent

uninsurable shocks to income.

Despite their ubiquitous use in the literature, these facts about the age profile of income vari-

ance are not as straightforward as they may first appear. Life-cycle models are calibrated to match

the evolution of the cross-sectional variance of income as individuals age holding fixed various

cohort characteristics as well as the macroeconomic environment. In reality, cohort characteristics

and the macroeconomic environment change over time. This makes it difficult to identify whether

changes in the cross-sectional variance of income are due to age effects, cohort effect, or time effect.

A typical dataset can tell us how the cross-sectional variance of income of a particular cohort

(say the cohort aged 30 in the year 2000) changes as that cohort ages. Suppose we see that the

cross-sectional variance of income of this cohort increases between 2000 and 2010. Does this arise

from the the accumulation of idiosyncratic income shocks (age effects)? Or does this arise from

the fact that 2000 was a business cycle peak, while 2010 was close to a business cycle trough (time

effects)?

This is an example of the age-time-cohort identification problem that arises in many contexts

in economics and other social sciences where researchers are working with data on the life-cycle

of individuals, households, firms, or other entities. Examples include studies of the life-cycle

profiles of wages, labor supply, voting, fertility, mortality, health, firm growth, firm innovation, in

addition to consumption and income. In all of these cases, researchers are interested in separating

age effects, from cohort and time effects. (For example, do voters become more conservative with

age?) But since age is equal to time minus cohort, linear age, time, and cohort effects are not

separately identified.

Importantly, in a model with additive age effects, time effects, and cohort effects, the three
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sets of effects are identified up to a linear rotation (Deaton, 1997; Schulhofer-Wohl, 2018). In other

words, it is only the slopes of the age, time, and cohort effects that are unidentified absent further

restrictions. This implies that non-linear age-time-cohort effects are identified. It also means that

any identifying restriction a researcher makes can be thought of as pinning down the slopes of the

age, time, and cohort profiles.

Different parts of the literature address the age-time-cohort problem in different ways. One

approach is to introduce seemingly “innocuous” identification assumptions such as fixing two

individual years to have the same time effect (i.e., coarsen the time effects) or two (or more) cohorts

to have the same cohort effect (coarsen the cohort effects). It is crucial to recognize, however, that

these are not truly innocuous assumptions. Rather, they amount to implicitly strong assumptions

about the slopes of the age, time, or cohort profiles. Papay and Kraft (2015) and Bell (2020) present

examples of how such “innocuous” assumptions can drive the conclusions of empirical studies.1

In the literature on the age-profile of cross-sectional income variance, the standard approach to

addressing the age-time-cohort problem—dating back to Deaton and Paxson (1994)—has been to

drop time effects entirely. This approach yields the strongly upward-sloping age profile of income

variance we refer to above. This stark assumption is, however, rejected by the data. The cross-

sectional distribution of income responds strongly to recessions (Storesletten, Telmer, and Yaron,

2004; Guvenen, Ozkan, and Song, 2014).

Moreover, the choice of methodology matters for the substantive conclusions. Figure 1 con-

trasts estimates of the slope of the age profile of income variance for two methods: the conven-

tional approach of dropping time effects (orange squares) versus the alternative of dropping co-

hort effects (blue dots). The “unconventional” approach—which allows for business cycle factors—

yields a slope that is roughly half as large as the conventional approach. This large difference was

noted by Heathcote, Storesletten, and Violante (2005), but the subsequent literature has largely

ignored this concern.

We propose a new approach to solving the age-time-cohort problem that combines proxy vari-

ables with (debiased) machine learning. Our jumping-off point is the “proxy variable” approach

in which a subset of the age, time, and cohort effects are modeled as being a function of a set of ob-

servable “proxies” (Heckman and Robb, 1985; Winship and Harding, 2008). We choose to model

the time effects in this manner. Rather than assuming that time effects are zero, we assume that

they are a function of business cycle proxy variables. A key challenge with this approach—which

1Schulhofer-Wohl (2018) and Rothstein (2023) address the identification problem by focusing only on non-linear
age, time and cohort effects. This is, however, insufficient in our application — the variance of persistent income
shocks depends directly on the upward trend of the age profile.
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Figure 1: Two Estimates of the Age Profile of Income Variance
Note: The orange squares are age effects from a model that regresses the cross-sectional variance of log-income
for a cohort at a points in time on age and cohort effects (but not time effects). The blue circles are age effects
from an analogous model with age and time effects (but no cohort effects). We place a black horizontal line
where the profiles intersect to aid visualization of the slopes. The data are from the PSID. The sample period
is 1978-2019. See sections 2 and 3 for further details.

we demonstrate—is that small and seemingly-reasonable changes to the proxy model generate

highly variable predictions for the age profile. The proxy variable approach, therefore, involves a

non-trivial model selection problem.

Since machine-learning methods excel at model selection, we adopt the debiased machine

learning approach of Chernozhukov, Newey, and Singh (2022) to estimate the slope of the age

profile using proxy variables. We choose among a large number of proxy variables using cross-

validation—a core idea from the machine learning literature. This approach yields a model that

explains the data well, even out of sample, without us having to specify the precise functional

form ahead of time. Furthermore, the debiasing procedure of Chernozhukov, Newey, and Singh

(2022) yield unbiased point estimates, valid standard errors, and an asymptotically normal confi-

dence interval for the estimated slope of the age profile of cross-sectional income variance.

We apply our method to US data from the Panel Survey of Income Dynamics (PSID) and to 12

countries represented in the Global Repository of Income Dynamics (GRID) database. Our debi-

ased ML method yields much smaller estimates of the slope of the age profile of income variance

than conventional methods. For the U.S. using the GRID dataset, our debiased ML estimate of

the slope is half as large as the estimate based on conventional methods. This implies a smaller
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role for permanent income shocks than is typically assumed in the literature. We also estimate a

smaller persistence of income shocks (a half-life of 4 years) using our debiased ML method. Es-

timates based on the GRID data are generally smaller (and much more precisely estimated) than

estimates based on the PSID.

When we apply our method to the 12 countries in the GRID dataset, we find that the con-

ventional approach of dropping time effects yields extreme variability in the estimated slope of

the age profile of income variance across countries. For some countries the age profile is hugely

positively sloped, while for others it has a very large negative slope. This contrasts strongly with

estimates using our debiased ML method. This method yields slopes that are much more homo-

geneous across countries, clustering around modest positive values (similar to our estimate for

the U.S.).

There are two additional novel elements of our procedure that deviate from common practice

in debiased machine learning and previous work on proxy variables. First, we implement cross-

validation by leaving out whole blocks of contiguous years—a procedure we describe as “blocked

cross-validation.” Surprisingly, we find that without blocking, proxy variables can fail to achieve

identification because machine learning methods can exploit dependence over time to effectively

recreate time trends. Previous work on proxy variable methods implicitly ruled out this possibly

via linearity assumptions. Second, we must rule out a set of trending proxy variables that flexible

machine learning models can use to reconstruct time trends even after blocked cross-validation

has been performed. Including this set of “forbidden proxies” resurrects the original identification

problem, as above, by effectively reintroducing a time trend. We theoretically substantiate these

requirements with a nonparametric analysis of the age profile estimand in the appendix of the

paper.

The remainder of the paper is organized as follows. Section 2 discusses the data on the life-

cycle of income we use. Section 3 describes the conceptual framework we employ and reviews the

age-time-cohort identification problem. Section 4 discusses the proxy approach and how it results

in a non-trivial model selection problem. Section 5 introduces our debiased machine learning

approach to solving this model selection problem. Section 6 presents the results for our empirical

application. Finally, section 7 concludes.
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2 Data on Income

Our primary variable of interest is the cross-sectional variance of log male labor income by age

and year. For the United State, we obtain estimates of this variable from two datasets. First, we

use the Global Repository of Income Dynamics (GRID) (Guvenen et al., 2022a), a collection of ag-

gregate statistics constructed using administrative microdata from 12 countries. The data for the

US comes from the Longitudinal Employer-Household Dynamics Infrastructure files at the Cen-

sus Bureau. The sample period is 1998-2019. We estimate our models using data on individuals

of age 25-55. When calculating the slope of the age profile, however, we focus on individuals of

age 35-50. This limits the influence of education and retirement on our results. All statistics within

GRID are constructed using a standardized set of sample selection criteria intended to harmonize

the data across countries. For example, income is deflated by the PCE, income observations un-

der a minimum wage-based threshold are removed, and the variance of log male labor income

is calculated after residualizing on year and age. We discuss these sample selection criteria in

Appendix A.

For comparison with earlier work, we also report results for the US based on data from the

Panel Study of Income Dynamics (PSID). Our sample period is 1978-2019. We calculate the vari-

ance of log male labor earns adjusted for changes in the PCE and residualized on year and age. We

adopt a set of sample selection criteria meant to mimic the harmonized sample selection criteria

used in the GRID data.

Beyond the US, GRID also records residual log income variances at the age-year level for 11

other countries: Argentina, Brazil, Canada, Denmark, France, Germany, Italy, Mexico, Norway,

Spain, and Sweden. Data for these countries are taken from a range of administrative sources

including tax and social security records. The sample period differs slightly across countries. See

Appendix A for additional information.

We use a number of other data series as proxy variables for time effects. We discuss those data

later in the paper.
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3 How Big Is the Permanent Component of Lifecycle Income Risk?

Consider the following simple specification for the log income of individual i at age a:

log Yi,a = g(xi,a) + yi,a (1)

yi,a = αi + zi,a + ϵi,a (2)

zi,a = ρzi,a−1 + ηi,a. (3)

Log individual income log Yi,a consists of a deterministic component g(xi,a) and a stochastic com-

ponent yi,a. The deterministic component g(xi,a) captures predictable variation in income with

age.2 The stochastic component yi,a, consists of three parts: an individual fixed effect αi, a persis-

tent component zi,a, and a transitory component ϵi,a. The persistent component follows an AR(1)

process with persistence ρ and innovations ηi,a. We assume for simplicity that yi,a, zi,0, αi, ϵi,a, and

ηi,a are all mean zero. We denote the variances of αi, ϵi,a, and ηi,a as σ2
α, σ

2
ϵ , and σ2

η , respectively,

and write the initial variance of the persistent component as σ2
z,0 := Var[zi,0].

A key question in models with uninsurable income risk is: what is the relative volatility of the

persistent and transitory income shocks ηi,a and ϵi,a? Persistent income shocks are much harder to

self-insure against. They therefore call for more precautionary savings and imply higher marginal

propensities to consume for a given level of liquid assets. Deaton and Paxson (1994) point out that

there is a straightforward way to identify the importance of persistent shocks in terms of the age

profile of the cross-sectional variance of income. For expositional simplicity, consider the case of

ρ = 1, i.e., the case where the persistent component is a permanent component. In this case, the

variance of the stochastic component of log income is

σ2
a := E[y2i,a] = σ2

α + E[z2i,a] + σ2
ϵ

= σ2
α + σ2

z0 + a σ2
η + σ2

ϵ . (4)

Notice that σ2
a is linear in age with a slope of σ2

η . In other words, the slope of the age profile of

income variance identifies the variance of the persistent component of income σ2
η when ρ = 1. The

intuition for this is straightforward: the cross-sectional variance of income will fan out with age

since the permanent shocks cumulate as people age (while transitory shocks do not). If ρ < 1, the

age profile of cross-sectional income will be concave rather than linear. However, the degree to

which it rises and the degree to which it is concave will identify σ2
η and ρ. As we saw in Figure

2The GRID data residualize income on age and year. We follow this same procedure when we use the PSID data.
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Figure 2: Cross-Sectional Income Variance by Age for Several US Cohorts
Note: Each point is the cross-sectional variance of log income in the US for a particular cohort in a particular
year from the GRID data. The points for particular cohorts are connected by lines.

1, the age profile of the cross-sectional variance of income is approximately linear in the PSID. In

section 6, we will see that it is somewhat concave in GRID.3

The challenge with using the age profile of the cross-sectional variance of income to identify the

variance of persistent shocks to income is that the pure age profile is not directly observable in the

data. We can compare the cross-sectional variance of income of people of different ages at a given

point in time. But differences may then be due to the people belonging to different cohorts. We can

follow the cross-sectional variance of income of a particular cohort as it ages. But differences may

then be due to the fact that observations at different ages are taken at different times. In the data,

we observe log income at age a in year t, and can construct moments E[(yti,a)
2] =: σ2

at. Figure 2

illustrates this using data from GRID. We would like to control for the effect of calendar year t

and birth cohort c = t− a to get moments σ2
a that are “timeless” and “cohortless” and can then be

used to estimate σ2
η via equation (4). However, the collinearity of age, time, and cohort makes this

tricky to do.

Consider the fixed effects model

σ2
at = αa + βt + γc + νat, (5)

where αa is a set of age fixed effects, βt is a set of time fixed effects, γc is a set of cohort fixed effects,

and νat an idiosyncratic component. If the three sets of fixed effects in this model were identified,

3The autocovariances of the stochastic component of log income are also informative about σ2
η . In the ρ = 1 case,

they are E[yi,ayi,a+h] = σ2
α + σ2

z0 + a σ2
η .

7



αa would be the pure age effects we seek to use to estimate σ2
η . Unfortunately, αa, βt and γc are

perfectly collinear since a = t− c. In particular, we can replace αa, βt and γc by

α̃a = αa + ka, β̃t = βt − kt, γ̃c = γc + kc, (6)

where k is any scalar and the predictions of the model will be unchanged. In other words, equation

(5) is identified up to a linear rotation. This poses a particularly severe problem in our application

since it is the slope of the age-profile that identifies σ2
η (when ρ = 1). The slope is completely

unidentified.

Any restriction that pins down k in equations (6) will render model (5) identified. Even

minimal-seeming restrictions—such as setting two time effects equal to each other—will do the

trick. It is tempting to view such restrictions as innocuous. In fact they are anything but innocu-

ous since they determine the slope of all three sets of effects αa, βt and γc.

The standard approach in the literature on the age-profile of the cross-sectional variance of

income is to make the strong assumption that all time effects are zero, βt = 0 ∀t (e.g., Deaton and

Paxson, 1994; Guvenen et al., 2021). It is easy to see from Figure 2 that this assumption is at odds

with the data. The cross-sectional variance of all cohorts bends down around 2008. This business

cycle fluctuation cannot be captured by a combination of age and cohort effects. The timing of the

bend is a non-linear time effect, which is identified as emphasized by Schulhofer-Wohl (2018).

4 Proxying for Time Effects

The identification problem discussed above implies that we must make additional assumptions

to identify a pure age profile of cross-sectional income variance σ2
a. The key challenge is how to

formulate a compelling set of assumptions. One approach to this is to assume that one set of effects

(age, time, or cohort) can be modeled as being a function of observable variables. This approach

is referred to as the proxy variable approach in the literature. An early formalization appeared in

Heckman and Robb (1985), which was substantially generalized in Winship and Harding (2008).4

We propose to model the time effects in our application as being a function of observable vari-

ables Zt. With this assumption (and maintaining linearity for expositional simplicity), equation

4Proxy variables have been used in many age-time-cohort applications, including to the level of consumption and
income (Gourinchas and Parker, 2002), wealth holdings (Kapteyn et al., 2005), health (Portrait et al., 2010), female labor
force participation (Euwals et al., 2011), and happiness (Su et al., 2022).
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(5) becomes

σ2
at = αa + γc + β⊤Zt + νat, (7)

where Zt is a vector of variables and β is a vector of coefficients. As long as the proxy variables Zt

are: (1) not perfectly linear in time, (2) capture all time effects, and (3) do not themselves depend

on both age and cohort, all of the parameters are identified. We describe the formal criteria for

identification in Appendix B.

While the proxy variable approach can secure identification, its use raises an important model

selection problem. There are many plausible proxy variables and there are many plausible func-

tional forms. How should one choose among these? It turns out that this choice is quite conse-

quential since results from proxy variable modeling of age, time, or cohort effects can be highly

sensitive to these choices (see, e.g., Lu and Luo, 2021).

This sensitivity is easy to illustrate in our application. Figure 3 plots the profile of age effects

(i.e., the αa’s) and their corresponding best fit lines that results from fitting the specification (7)

with different plausible macroeconomic variables in Zt (left panel) and different functional forms

(right panel). Considering first the left panel: different choices of proxy variables can result in a

slope of the age profile anywhere from slightly negative to strongly positive. In the right panel, we

use a fixed set of proxies — Unemployment, log GDP, and Inflation — but consider polynomial

expansions of the proxies of different degrees. As the polynomial degree we include sweeps from

one to seven, the estimated slope ranges from relatively flat to strongly positive.

Figure 3 clearly demonstrates that different seemingly-reasonable choices of proxy variables

and functional forms yield radically different estimates for the age slope. Clearly, our results will

hinge crucially on how we resolve the model selection problem the proxy variable approach gives

rise to. We now turn to that issue.

5 Our Methodology: Debiased Proxy Machine Learning

To solve the model selection problem discussed in section 4, we leverage several ideas from the

machine learning literature. We consider a large set of candidate models with different proxy

variables and different functional forms, including models with flexible interactions between age,

cohort, and the proxies for time effects. We employ a blocked cross-validation procedure to choose

among these models. Finally, we debias the resulting estimates of the slope of the age profile.
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(a) Different Proxies (b) Different Functional Forms

Figure 3: Sensitivity of Estimates of the Age Profile of Cross-Sectional Income Variance
Note: The left panel presents estimates of the age profile using (7), but using different proxies Zt for time effects. We
present estimates for 30 different proxy variables, used one at a time. The proxy variables are the 10 variables discussed
in Section 5, the lag of each of these, and the first difference of each of these. We plot both the estimated age profiles (as
dots) and the corresponding best-fit lines. The right panel present estimates of the age profile with different function
forms for the model of time effects. In all cases, Zt = {Unemployment, log GDP, Inflation}, but we consider polynomial
expansions of these proxies of different degrees from one to nine.

5.1 Proxies, Features, and Models

The specific machine learning methods we use are guided by the relatively modest size of our

dataset. Many machine learning methods are designed for large datasets. Our datasets have

between 434 and 806 observations (age-time pairs). For datasets of this size, ridge regression,

Lasso, and kernel ridge regression perform well, while more flexible models like random forests

and neural networks typically fail to generalize. We therefore use ridge regression, lasso, and

kernel ridge regression (KRR) as our basic set of models — we consider more complex models in

Appendix D.2.

Our baseline set of proxy variables are ten macroeconomic time series: log GDP, log consump-

tion, log investment, export values, log industrial production, unemployment, log CPI, a short

term interest rate, the exchange rate, and oil prices. For the US, we also include a measure of

the skill premium. We summarize the particular data series we use, and their sources in Ap-

pendix A.4. For each variable, we consider eight transformations (in addition to the variable

itself): the first difference, lag, square, square root, square of first difference, square root of first

difference, square of lag, and square root of lag. All in all, this makes for 9 × 10 = 90 “features”

(99 for the US).

Flexible machine learning models can theoretically learn the relevant features from the data. In

practice, however, preprocessing and trimming of the feature set can make the learning task easier,
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substantially improving predictive performance. Given the modest size of our dataset, we are able

to train our models with many different feature subsets. However, doing so for every combination

of feature sets (290 feature sets) is infeasible. We therefore perform two feature selection steps prior

to training our models.

First, we remove proxies that trend too strongly with time as these threaten identification (see

Appendix C.3). Specifically, we regress each feature on time and drop features for which this

regression has an R2 > 0.75. Second, we filter for proxies that have the strongest univariate

relationship with the outcome variable. In particular, we fit kernel ridge regression models using

the outcome variable and one proxy at a time.5 As candidate features, we keep only the ten proxies

with the smallest cross-validated mean squared error.

We train our models on all combinations of these ten chosen candidate features. For each

sublist, we also include either age and cohort trends or age and cohort dummies. We therefore

train our models on 2 × (210 − 1) = 2046 different feature matrices for each country. For each

method, we consider a range of possible values of the most relevant hyperparameters: the regu-

larization penalties for lasso and ridge regressions, and the kernel and bandwidth for KRR. See

Appendix D.1 for details. We normalize each feature (including the dummy variables) by sub-

tracting their mean and dividing by their standard deviation.

5.2 Model Selection with Blocked Cross-Validation

We use cross-validation—i.e., pseudo-out-of-sample fit—to choose among the many models dis-

cussed above. Standard cross-validation is performed by randomly splitting observations in the

dataset into k disjoint “folds” (i.e., subsets). A typical approach is to “train” (i.e., estimate) each

model on data from k − 1 of the folds, and evaluate performance in terms of mean-squared error

(MSE) on the remaining fold. This procedure is repeated using all possible splits into training and

test sets. The overall performance of the model is then the average test MSE across splits and the

model with the smallest cross-validated MSE is chosen.

This plain-vanilla cross-validation procedure runs into “data leakage” problems when the data

are dependent as is the case in our panel data setting. Recall that our data are indexed by age and

time. We therefore have many observations from each year (one for those aged 35, another for

the those aged 36, etc.). The standard random split of the data into k folds will typically result in

data from a given year being divided across folds, and therefore both training and test data can

simultaneously contain observations from the same year. As a consequence, the model is never

5We use cross-validation to choose the kernel, kernel bandwidth, and penalty parameter for each proxy.
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Figure 4: Our Blocked Cross-Validation Procedure with Block Size of Three Years

evaluated out-of-sample when it comes to time. The worry then is that the flexible models we

employ can exploit the dependence between training and test sets to spuriously overfit the data.

Since business cycles unfold over several years, dependence between observations close in time is

also a concern.

To mitigate data leakage between training and test sets due to dependent data, we use blocked

cross-validation. Rather than splitting the observations randomly, we split observations into blocks

of contiguous years.6 Specifically, we use eight year blocks. To reduce variance as much as pos-

sible, we use all possible contiguous year blocks of this length as test sets as illustrated in Fig-

ure 4. This is essentially an extension of repeated cross-validation (Burman, 1989; Kim, 2009) to the

blocked setting: the average MSE from our procedure is the same as the expectation of uniformly-

at-random choosing a contiguous block of years as a test set. The resulting procedure is more

computationally intensive than standard k-fold blocked cross-validation, but remains tractable in

our application because the number of years in our sample is not too large.

Blocked cross-validation plays an especially important role in our setting. Dependence be-

tween observations can degrade the quality of model selection to differing degrees in different

settings — compare Bergmeir et al. (2018) and Liu and Zhou (2024). Surprisingly, in our setting,

if we use plain-vanilla cross-validation for model selection, the slope of the age profile of σ2
a is

completely unidentified even with proxy variables. We demonstrate this formally in Appendix C.3.

In order to identify the contribution of the time effects, the proxy variables must be able to make

6There is a fairly extensive literature — both in machine learning and econometrics — going back to the late 80’s
on cross-validation variants adapted for dependent data. Influential early work includes Snijders (1988); Györfi et al.
(1989); Burman et al. (1994); Racine (2000). A modern empirical literature using machine learning methods (Bergmeir
and Benı́tez, 2012; Bergmeir et al., 2018; Cerqueira et al., 2020; Liu and Zhou, 2024) has consistently found that the
blocked cross-validation method of Snijders (1988) performs well across a variety of different time-series settings.
Racine (2000) additionally introduces “gaps” by dropping observations directly between train and test, but the modern
empirical literature finds this does not improve performance in practice.
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predictions on unseen years.7

5.3 Computing the Slope of the Age Profile

The machine learning procedure described above yields a predictive model for σ2
at that takes as

input age a, cohort c, and proxy variables z. We will write m̂ to denote our trained model as a

function of its inputs. For a given age-time pair (with implied cohort and proxies associated with

that year), our model’s prediction is σ̂2
at = m̂(a, c, z).

Our primary object of interest is not the individual predictions m̂(a, c, z) but rather the slope of

the predictions as age varies. In the familiar special case of a linear model (7) we have m̂(a, c, z) =

α̂a + β̂⊤z + γ̂c. In this case, the age effects are the α̂a’s and one can regress these on age to get the

slope of the age profile of m̂(a, c, z).

More generally, m̂(a, c, z) may be non-linear and it is not as obvious how to define age effects.

We adopt a definition based on counterfactually changing age, but leaving cohort and time fixed.

We implement this in practice for the age effect at age 35 (say) by making predictions for σ2
35 using

m̂ for every observation in our dataset but counterfactually setting the age to 35 in all observations.

In other words, we calculate the sample analog of σ̂2
35 := E[m̂(35, c, z)]. Doing this for every age

yields a set of age effects. We can then calculate the slope of the age effects by regressing these

age effects on age. In the special case of the linear model (7), we recover the usual fixed effects

profile up to a constant. Specifically, we have σ̂2
35 = α̂35 +E[β̂⊤z + γ̂c] where the expectation term

is an intercept independent of age. Our non-parametric definition has the advantage that it can be

computed for any machine learning model (whether or not the model uses a notion of age fixed

effects internally). A similar definition using counterfactual averages was recently independently

proposed for cohort profiles in Reynolds (2024).

5.4 Debiased Machine Learning and Standard Errors

Machine learning estimators virtually always use bias to reduce variance. For example, Ridge

and Kernel Ridge regressions use regularization to explicitly shift their coefficients towards zero.

Regularization can be optimal for minimizing out-of-sample mean square error (by preventing

overfitting). But in our context—absent some adjustment—the bias will pass through to our esti-

mate of the slope of the age effects. A key concern for us is therefore: will we estimate a smaller

7As a special case, using the AIC or BIC for model selection also yields complete lack of identification. The AIC and
BIC are asymptotically equivalent to leave-one-out and leave-k-out cross-validation respectively (Stone, 1977). Winship
and Harding (2008) use the AIC for model selection, but they secure identification through a linearity assumption.
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slope with our machine learning approach simply due to a mechanical effect of regularization?

We address this issue by using the “Debiased Machine Learning” (DML) approach of Cher-

nozhukov et al. (2018). Recall that m̂ is our cross-validated machine learning predictor of σ2
at. Let

slope(m̂) be our estimate of the slope of the age profile as described in Section 5.3. The key idea

behind DML is to estimate a function, α̂(a, c, z), associated with the slope operator, slope(·), called

its “Riesz representer.” Chernozhukov et al. (2018) show that this function α̂ can be used to add

the following bias correction term to our baseline estimate of the slope:

slope(m̂) + Ê
[
α̂(a, c, z) ·

(
σ2
at − m̂(a, c, z)︸ ︷︷ ︸
prediction errors

)]
, (8)

with the resulting estimate being asymptotically unbiased and having a valid normal confidence

interval. This holds even if the estimates m̂ and α̂ are both biased themselves.

It remains to define and estimate the Riesz representer. Our main strategy for this is to adopt

the “automatic” estimation strategy of Chernozhukov, Newey, and Singh (2022). Their approach

uses the fact that the true Riesz representer is the unique minimizer of the following optimization

problem:

min
α

{
E[α(a, c, z)2 − 2 · slope(α)]

}
. (9)

We can estimate α̂ using machine learning algorithms by minimizing the loss (9). In doing this,

we consider the same large set of candidate models and same set of proxy variables that we used

to estimate m̂. Likewise, for model selection, we use the same blocked cross-validation procedure.

A downside of characterizing the Riesz representer as the solution to the optimization problem (9)

is that it provides little intuition. We attempt to provide a more insightful discussion of the Riesz

representer in Appendix C.

With estimates of m̂ and α̂, we can compute the debiased estimate of the slope using (8). Note,

that to achieve valid inference, we should estimate m̂, α̂ in a separate sample from the one we use

to compute (8). In practice, we use a cross-fitting procedure. The notation is cumbersome so we

defer a complete description of the cross-fit estimator to Appendix D.5. Because we fit both m̂ and

α̂ using machine learning and then combine them, this procedure is sometimes called “double

machine learning” or “doubly-robust estimation”.8

8This approach dates back to at least Robins et al. (1994) for the estimation of average treatment effects. See Kennedy
(2022) for a review. For earlier work in the econometrics literature that takes advantage of writing the Riesz representer
as the solution to an optimization problem, see Ai and Chen (2003).
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Under minimal conditions derived in Chernozhukov et al. (2023), plugging our resulting m̂

and α̂ into equation (8) results in an unbiased estimator of the slope. This implies that the smaller

estimates of the slope our method yields compared to previous estimate are not driven mechani-

cally by regularization bias. To further buttress this point, in Appendix G, we perform a simula-

tion study with semi-synthetic data generation processes calibrated to the US GRID data to assess

the validity of our methodology. We design this simulation to act as a sort of placebo, where the

ground-truth slope is made to be high, but naive fixed effects regression would result in an incor-

rectly low slope. We find that the debiasing step reduces bias by a factor of ten and our debiased

proxy machine learning estimator accurately recovers the higher value of the slope in simulation.

In addition to ensuring unbiasedness, the debiasing procedure also results in an asymptotically-

normal confidence interval with the usual standard errors. We give a complete description of how

we compute the point estimate and standard errors in Appendices D.4 and D.5. In our simulation

study, we find that naively computing standard errors without debiasing results in a confidence

interval that drastically undercovers — the naive 95% confidence interval contains the truth 0% of

the time, whereas our debiased confidence interval contains the truth 96% of the time. Thus, de-

biased machine learning also plays a crucial role in enabling accurate uncertainty quantification.

We provide an outline of our end-to-end procedure in Algorithm 1. We emphasize that our

estimator can be applied to other age-time-cohort settings by replacing σ2
at with any other outcome

variable.

6 Results

We next employ the model discussed in section 5 to estimate the slope and persistence of the age

profile of the cross-sectional variance of income. We begin by presenting results for the United

States. We then present an international comparison including 11 other countries available in the

GRID dataset.

6.1 Results for the United States

Table 1 reports our estimates of the slope of the age profile of the cross-sectional variance of income

for the United States. We present results from the GRID and PSID datasets. For PSID, we present

results for two sample periods: 1998-2019 (for comparability with our GRID results) and 1978-

2019. We present results for four models: the conventional “age-cohort” model (which includes

age and cohort fixed effects, but no time fixed effects), the “age-time” model (which includes age
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Algorithm 1 Debiased Proxy Machine Learning

1: INPUT: block length B, predictive models M, and weighting models W
2: Let L = nyear −B + 1 be the number of blocks.
3: for year t = 1, . . . , L do
4: Let Dtest

t be the observations in years t to t+B. Let Dtrain
t be the rest.

5: for mi ∈ M do
6: Train model mi on Dtrain

t to predict σ2
at given a, c, z.

7: Compute MSEit, the mean-squared error of mi on Dtest
t .

8: end for
9: for wj ∈ W do

10: Train weight model wj on Dtrain
t to minimize the “Riesz loss” (9).

11: Compute RLjt, the Riesz loss of wj on Dtest
t .

12: end for
13: end for
14: Let m̂ = argminmi

1
L

∑L
t=1 MSEit.

15: Let ŵ = argminwj

1
L

∑L
t=1 RLjt.

16: Compute θ̂, the debiased point estimate of the slope, using m̂ and ŵ as in (20).
17: Compute V̂ using m̂, ŵ, θ̂ as in (21), and compute ŝtd err using V̂ as in (22).
18: OUTPUT: θ̂ and ŝtd err

and time fixed effects, but no cohort fixed effects), and two versions of our machine learning (ML)

model (with and without our debiasing procedure). For the debiased ML estimates, we include

estimates of the 95% confidence interval of our estimate.

We estimate these four models on data from individuals of age 25 to 55. However, to limit the

influence of schooling and retirement, our main estimates of the slope of the age profile are for age

effects over the age range 35 to 50. Later in this section, we present results on the age profile for

the full age range.

A result that emerges from Table 1 is that our debiased ML estimate of the slope of the age

profile is considerably smaller than the age-cohort estimate that has been widely used in the lit-

erature. For the GRID dataset, the debiased ML estimate of the slope is 0.33% per year, while

the age-cohort estimate is 0.67% per year.9 For the PSID with sample period 1978-2019, the debi-

ased ML estimate is 0.84% per year, while the age-cohort estimate is 1.39% per year. We conclude

from this that the widely-used age-cohort estimate of the slope of the age profile of cross-sectional

income variance likely yields estimates that are considerably upward biased. The age-cohort esti-

mate is outside the 95% confidence interval for the debiased ML estimate in both of the cases just

discussed. In these cases, our debiased ML estimate is much closer to the age-time estimate than

9A slope of 0.33% per year means that we estimate that the cross-sectional variance of log income rises by 0.0033 per
year of age. This then also means that the cross-sectional variance rises by 0.33% per year to a first order approximation.
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Table 1: Slope of Age Effects of the Cross-Sectional Variance of Income

Dataset Years Age-Cohort Age-Year Biased ML Debiased ML
GRID 1998-2019 0.67 0.40 0.36 0.33± 0.13

PSID 1998-2019 1.34 0.64 0.56 1.08± 0.69

PSID 1978-2019 1.39 0.90 0.84 0.84± 0.35

Note: The table presents results on the slope of the age effects of the cross-section variance of income for the
United States. We present the slopes multiplied by 100 to ease readability. The “Age-Cohort” column presents
results from a model with age and cohort effects, but no time effects. The “Age-Time” column presents results
from a model with age and time effects, but no cohort effects. The “Biased ML” column presents results from our
model without debiasing. The “Debiased ML” column presents results for our model including our debiasing
procedure. This last column also presents estimates of the 95% confidence interval of the estimate. The PSID
results use sample selection criteria similar to those for GRID.

the age-cohort estimate.

A second result that emerges from Table 1 is that we estimate a considerably smaller slope of

the age profile with GRID data than with PSID data. The debiased ML estimate for GRID is 0.33%

per year, while it is 0.93% per year and 0.84% per year for the two different sample periods we

use for PSID. Our estimate for the GRID dataset is much more precise than our estimate for PSID.

The 95% confidence interval for our GRID estimate is [0.20, 0.46], while even for the longer sample

period in the PSID our estimate is much wider at [0.49, 1.19].

Table 2 presents estimates for an alternative measure of the growth in the cross-sectional vari-

ance of income over the life cycle: the change in the cross-sectional variance of income between

age 35 and age 50. These estimates tell the same story as the slope estimates in Table 1. The debi-

ased ML estimates are substantially smaller than the age-cohort estimates and the estimates from

GRID are substantially smaller than the estimates from the PSID.

Table 2: Change in Cross-Sectional Variance of Income from Age 35 to 50

Dataset Years Age-Cohort Age-Year Biased ML Debiased ML
GRID 1998-2019 10.4 6.5 5.7 5.3

PSID 1998-2019 18.9 8.4 9.6 13.1

PSID 1978-2019 24.0 15.8 14.7 14.7

Note: The table presents results on the change in the cross-sectional variance of income from age 35 to age 50. We
multiply these estimates by 100 for readability. See the note for Table 1 for more detail.

Figure 5 plots our estimated age profiles for the GRID dataset. This estimated age profile is

very smooth, reflecting the fact that the GRID dataset is based on a large administrative dataset.

The estimated age profile for the PSID is estimated with vastly more sampling error (see Figure H.1

in the appendix). We can clearly see the difference in slope between the profile for the age-cohort

model and the profile for the debiased ML model in Figure 5.

Another notable feature of the age profile in Figure 5 is that it is concave. This suggests that
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Figure 5: Age Profile of Cross-Sectional Income Variance in the US
Note: The figure plots the estimated age profile of the cross-sectional variance of income for three models using
GRID data.

income shocks are less than fully permanent. Table 3 presents GMM estimates of the persistence

parameter ρ for the income process presented in Section 3. (We describe the details of our GMM

procedure in Appendix F.) For the GRID dataset, our debiased ML estimate of ρ is 0.854. This

estimate implies that the half-life of income shocks in GRID is about 4 years. As with our estimates

of the slope of the age profile, our debiased ML estimate for ρ is smaller than the age-cohort

estimate. The age-cohort estimate for the GRID dataset is 0.934 implying a half-life of 10 years.

Our debiased ML estimate therefore implies not only a smaller slope of the age profile, but also

less persistence of income shocks.

Table 3: Persistence of Income Shocks (ρ)

Dataset Years Age-Cohort Age-Year Biased ML Debiased ML
GRID 1998-2019 0.934 0.878 0.882 0.854± 0.075

PSID 1998-2019 0.974 0.950 0.939 0.944± 0.072

PSID 1978-2019 1.049 1.056 1.060 1.050± 0.045

Note: The table presents results on the persistence of income shocks—ρ in Section 3. See the note for Table 1 for
more detail.

For the PSID, we estimate considerably larger values for ρ. For our longer PSID sample, we

estimate a value for ρ that is larger than one. This lines up with the linear visual appearance of

the (noisy) income profile for the PSID in Figure H.1. This estimate implies that income shocks are

permanent. It matches the age profiles reported by Deaton and Paxson (1994) using CEX survey

data, which similarly look noisy but linear.
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Table 4: Slope of Age Effects Across Countries

Country Years Age-Cohort Age-Year Biased ML Debiased ML
Argentina 1996-2015 −2.16 0.80 −0.13 0.33± 1.95

Brazil 1993-2018 −1.37 1.33 −0.25 0.24± 1.63

Canada 1996-2016 0.41 0.27 0.28 0.27± 0.10

Denmark 1996-2016 0.50 0.08 0.28 0.30± 0.26

France 1996-2016 0.44 0.28 0.38 0.43± 0.29

Germany 2001-2016 0.93 0.26 0.67 0.73± 0.33

Italy 1996-2016 1.09 −0.29 0.15 0.20± 0.92

Mexico 2005-2019 0.13 0.82 0.20 0.43± 0.40

Norway 1996-2017 0.91 0.48 0.71 0.63± 0.19

Spain 2005-2018 1.67 0.70 0.14 0.00± 0.43

Sweden 1996-2016 −0.23 0.18 0.09 0.02± 0.12

USA 1998-2019 0.67 0.40 0.36 0.33± 0.13

Note: The table presents results on the slope of the age effects of the cross-section variance of income for twelve
countries using data from GRID. We present the slopes multiplied by 100 to ease readability. See the note for Table
1 for more detail.

6.2 Results for Twelve Countries

Table 4 presents estimates of the slope of the age profile of cross-sectional income variance for

twelve countries using GRID data. We present estimates for the same four models as we did for

the US above: the conventional “age-cohort” model, the “age-time” model, and two versions of

our machine learning (ML) model (with and without our debiasing procedure). As with the US

estimates, we estimate the age profile on the full range of ages, but then estimate its slope over the

age range 35-50 years.

Consider first the estimates for the conventional age-cohort model. These vary wildly across

the twelve countries. For the US, our age-cohort estimate is 0.67. For several countries we estimate

much higher slopes: for Germany the slope is 0.93, for Italy it is 1.09, and for Spain it is 1.67. For

other countries we estimate much lower slopes. For three countries we actually estimate negative

slopes: -0.23 for Sweden, -1.37 for Brazil, and -2.16 for Argentina. Taken at face value, these results

suggest enormous heterogeneity in the nature of income risk over the life-cycle across different

countries.

Our estimates for the debiased ML model are much more homogeneous across countries. The

estimate for the US is 0.33. The largest two slopes we estimate are 0.63 for Norway and 0.73 for

Germany. None of the estimates are negative. The smallest two estimates are 0.0 for Spain and

0.02 for Sweden. Brazil and Argentina’s estimates are close to the median country at 0.24 and 0.33,

respectively. This contrasts sharply with the large negative estimate for these countries for the
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(a) Age-Cohort Estimates (b) Debiased ML Estimates

Figure 6: Normalized Age Profiles Across Countries
Note: The figure presents estimated age profiles for the twelve countries with have data on from GRID. The age
profiles are normalized to zero at age 35 and plot the percentage changes in the cross-sectional variance of income
at different ages relative to age 35.

age-cohort model.10

The confidence intervals we report for the debiased ML model in Table 4 are clustered by

year (allowing for correlation across age within year). These confidence intervals reveal that our

procedure yields quite precise estimates for a number of countries including the United States and

Canada. However, for other countries, the confidence intervals we estimate are quite wide. This is

particularly the case for Argentina and Brazil. For these countries, the confidence intervals include

all plausible values for the slope of the age profile. These large confidence intervals arise because

the proxy variables do not capture the time effects for these countries well in the earliest part of

the sample, especially in 1996-1998 in Argentina and 1994-1995 in Brazil. Developing better proxy

variables for time effects for these countries is an important area for further research.

Figure 6 visualizes the large difference between our estimates from the conventional age-

cohort model and our debiased ML model. We plot the age profiles for all twelve countries nor-

malized to zero at age 35 for each country. The left panel plots the estimated age profiles for the

age-cohort model, while the right panel plots the age profiles for the debiased ML model. The

difference is very stark.

Figure 7 plots our debiased ML estimates of the age profiles for the twelve countries in levels

over the full range of ages we use to estimate these profiles: ages 25 through 55 years. Several

results stand out. First, there is a large degree of heterogeneity in the level of income variance

across countries. The three Latin American countries in our dataset (Argentina, Brazil, and Mex-

ico) have the highest income variance. Below them is the United States. Considerably below that

10Table H.1 in Appendix H.2 presents results on the persistence of income shocks across countries.
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come Canada and the eight European countries in our dataset.

For the three Scandinavian countries in our dataset (Denmark, Norway, and Sweden) we see

a substantial drop in income variance from age 25 to age 30. This is the case to a lesser extent in

France. In the other countries, the income profile is flat or upward sloping at young ages. Income

variance in Norway is actually larger than in the U.S. for 25 year olds. But by age 30 it is nearly

30% lower. The extremely low income variance in Sweden and Denmark at older ages arises to a

very large extent “due to” a substantial fall from ages 25 to 35 relative to countries such as Canada

and Italy.

Figure 7: Age Profiles of Income Variance for an Extended Age Range

Finally, the degree to which the age profile is concave or convex is correlated with its level

across countries. The countries with large income variance also have concave age profiles of in-

come variance, while the countries with small income variance tend to have convex income pro-

files. The countries with middle of the road income variance levels tend to have income profiles

that are flat and neither convex nor concave.

7 Conclusion

We propose a new proxy variable machine learning approach to disentangle age, time and cohort

effects. We apply this methodology to the classic problem of estimating how the cross-sectional

variance of income changes over the lifecycle. Our benchmark empirical analysis applies our

methodology to the newly developed Global Repository of Income Dynamics (GRID) data, a col-

lection of aggregate statistics constructed using administrative microdata for 11 countries: Ar-

gentina, Brazil, Canada, Denmark, France, Germany, Italy, Mexico, Norway, Spain, Sweden and
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the United States.

Our methodology allows us to make substantially weaker identifying assumptions than the

standard approach in the literature of ruling out time effects—which is clearly rejected by fluctu-

ations in inequality over the business cycle. We estimate a significantly smaller slope of the age

profile of income variance for the US than conventional methods. The implications of our method-

ology for countries other than the US are even more striking. In emerging economies, ruling out

time effects—which embody macroeconomics shocks—is highly problematic and implies erratic

and variable profiles for the income variance over the lifecycle. Our new methodology yields age

profiles that are much more consistent across countries.

Our application demonstrates a number of methodogical points relevant for other applica-

tions. First, in panel data settings with substantial macroeconomic effects, it is crucial to use

“blocked” cross-validation as opposed to off-the-shelf cross-fitting techniques from the machnine-

learning literature that simply leave out a random fraction of the data. Second, in weakening the

assumptions about time effects, we must restrict attention to proxy variables that differ sufficiently

from time trends. Finally, we find that kernel ridge regression performs well in our application

(with its relatively modestly-sized dataset) relative to more complex machine learning models

such as random forests or neural networks. We believe that our methodology has the potential to

provide a structured alternative to existing methods for addressing the identification challenges

arising from the potential existence of age, time and cohort effects in a wide variety of applications

in the social sciences ranging from understanding the age profile of political preferences to the age

profile of household wealth.
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A Data

A.1 GRID US

For the results reported in section Section 6.1, we use data for the United States released as part of

the Global Repository of Income Dynamics (GRID) (Guvenen et al., 2022a). The data come from

the Longitudinal Employer-Household Dynamics Infrastructure files at the Census Bureau. We

now describe the sample selection criteria used by GRID to construct the age-year moments. Note

that we do not have access to the underlying microdata. Observations are at the individual level,

and we consider only males for our main specification. The income measure is PCE-adjusted log

labor earnings including wages, salaries, tips, bonuses, but not self-employed or business income.

Observations are kept if they are above a floor of 260 times the real federal hourly minimum wage

in that year. Income is winsorized at the 99.999999th quantile. Finally, log income is residualized

by a regression on year and age dummies. See Guvenen et al. (2022b) and the GRID documenta-

tion for more details.

A.2 PSID following GRID

In section Section 6.1, we also present results based on data from the PSID. We develop sample

selection criteria meant to mimic those used by the GRID dataset discussed above. We use the

individual file to track all male individuals in the PSID over time, regardless of their head or

marital status. We consider only individuals from the representative SRC sample, i.e. we drop

the poverty and immigrant oversamples. We use PCE-deflated log labor income as the income

measure, keeping only observations above the 260 times the real federal hourly minimum wage

floor. We winsorize observations above the 99.99 quantile. Finally, log income is residualized by a

regression on year and age dummies.

A.3 Grid International

In section Section 6.2, we also present results for 11 additional countries available in the GRID

database. GRID tries as much as possible to harmonize the data across countries, but the precise

sample selection criteria and variable definitions differ slightly. The GRID website provides details

on sample section and variable definitions for each country — https://www.grid-database.

org/documentation. We provide three illustrative examples here that highlight some of the

divergences across countries.
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The data for Germany combines records from social security data and personal income tax

records. GRID uses random 10% subsample of the social security observations, and a random

25% subsample of the tax observations. Annual earnings includes overtime pay, bonuses, 13th

month pay, paid sick leave, severance pay, and vacation allowance. Self-employment is excluded.

A wage floor is imposed based on the Germany national minimum wage.

By contrast, the data for Norway comes from annual tax records, which cover the entire pop-

ulation. Labor income includes salaries and hourly wages; fees received by board members,

bonuses, commissions; overtime, piecework, performance, caregiver, severance, and holiday pay-

ments; fixed wage and irregular supplements. Self-employment is excluded. Norway does not

have a minimum wage, so a wage floor is imposed based on the US minimum wage.

Finally, the data for Argentina comes from employer-employee matched social security records.

GRID uses a random 3% subsample, which is representative of formal employment at private

firms — however private formal employment is only 30-40% of total employment. Labor income

includes base salary, overtime compensation, performance and seasonal bonuses, paid vacations,

paid sick leaves, and severance payments. Self-employment is excluded. A wage floor is imposed

based on the Brazilian national minimum wage.

The sample period available for different countries in GRID also varies somewhat. Table A.1

provides the sample period for each country.

Table A.1: GRID Sample Years

Country Full Sample Years Sample Years with Proxies
Argentina 1996-2015 1996-2015

Brazil 1985-2018 1993-2018
Canada 1983-2016 1996-2016

Denmark 1987-2016 1996-2016
France 1991-2016 1996-2016

Germany 2001-2016 2001-2016
Italy 1985-2016 1996-2016

Mexico 2005-2019 2005-2019
Norway 1993-2017 1996-2017

Spain 2005-2018 2005-2018
Sweden 1985-2016 1996-2016

USA 1998-2019 1998-2019
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A.4 Proxy Variables

Our baseline set of proxy variables are ten macroeconomic time series: log GDP, log consump-

tion, log investment, export values, log industrial production, unemployment, log CPI, a short

term interest rate, the exchange rate, and oil prices. We have sought to obtain harmonized defi-

nitions for these time series across countries. We source GDP, consumption, investment, exports,

unemployment, and CPI from the World Bank’s World Development Indicators (WDI) database.

GDP, consumption, investment are measured in constant 2015 US dollars. For exports, we use the

export value index (2015 = 100). For unemployment, we use the percent unemployed out of the

male labor force because our income data is restricted to men. We source the industrial produc-

tion index from the International Monetary Fund’s (IMF) International Financial Statistics (IFS)

database. Industrial production data were not available for Argentina and Denmark. We use a

single measure of the short term nominal interest rate per country. We choose among the T-bill

rate, the money market rate, and the policy rate (whichever series has the longest sample for each

country). We source the T-bill and money market rates from Bloomberg, and the policy rate from

the IMF IFS database. For the exchange rate, we use the real effective exchange rate series from

Darvas (2021). We use their broad measure, REER 170. Finally, we use the same oil price series

across countries. We adopt the West Texas Intermediate (WTI) spot crude oil price from FRED,

Federal Reserve Bank of St. Louis.

Finally, for the United States, we include a measure of the skills premium. From the Current

Population Survey, we source median usual weekly earnings of full-time wage and salary workers

age 25 years and over with a Bachelor’s degree and higher, and with a high school diploma, but

no college. We use the ratio of these two series as our skills premium measurement.

B Proxy Assumptions

In this appendix, we provide formal criteria for when a vector of proxy variables Z is sufficient

for replacing time in the age-time-cohort problem.

B.1 The Mechanism-Based Approach

We adopt the general framework introduced in Winship and Harding (2008). This framework

assumes that the effects of age, time, and cohort on some outcome are mediated by a set of mecha-

nistic explanatory variables. By Pearl’s “front door criterion” (Pearl, 2009), as long as we observe

all of the relevant mediators for at least one of time or cohort, then the age profile is identified.
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One example of a causal diagram that would satisfy these requirements is illustrated in Fig-

ure B.1. A variety of assumptions are encoded in this diagram: We are assuming that the time

effect acts only through unemployment, and the cohort effects act only through education. We are

also assuming that age and cohort have no effect on unemployment (except through time), and

age and time have no effect on education (except through cohort).

Figure B.1: Simple Example with Mediators

Figure B.2 presents a more complicated causal diagram, with a mechanism that is influenced

by both time and cohort (cohort size), and with multiple levels of mediators. In this setting, the

age profile would still be identified, although the estimation strategy would be more complicated.

See Winship and Harding (2008) for details.

Figure B.2: More Complex Example with Mediators
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B.2 Our Approach: A Simple Proxy Assumption

Our approach is a special case that Winship and Harding (2008) call the “proxy variable” ap-

proach. The original idea of proxying for time effects goes back to at least Farkas (1977) who

replace calendar year with the unemployment rate but without giving any formal justification.

Heckman and Robb (1985) provides a formal justification from a structural perspective, and intro-

duces the term “proxy variable.”

Figure B.3 presents a diagram for the structure we assume. Notice that we do not do any

modeling of the mechanisms that sit between age and the outcome, or between cohort and the

outcome. This is essentially without loss of generality, because we only need to cut-off a single

one of A, T, or C from Y in order to identify the age profile. We choose T because we think

the macroeconomic mediators for T are easier to identify than those for A or C. Importantly,

this structure still allows a hypothetical additional mechanism like education to effect Y , we just

assume that it is captured by a combination of age and cohort effect.

Figure B.3: Proxy Variable Structure

Ultimately, this causal diagram boils down to two main substantive assumptions. First, an

exclusion restriction: we assume that, conditional on A and C, T has no effect on Y except through

Z. For example, this means there are no additional unobserved macroeconomic variables that

cause Y . Second, we assume that neither A nor C effect Z. Intuitively, we usually think of a macro-

variable like the unemployment rate as being a pure time effect. The same assumption is made

in the main application in Winship and Harding (2008). But while this may not be a particularly

strong assumption, it does still rule out, e.g. an age composition effect on the unemployment rate.

This also rules out diagrams like Figure B.2, where T affects Y through education via cohort size,

but both cohort size and education are also affected by C.
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We could relax this second assumption slightly: the proxies Z can be affected by at most two

of A, T , and C. This would introduce additional complexity in the form of a first stage regression,

as discussed in Winship and Harding (2008). As a consequence, we make the stronger assump-

tion embedded in Figure B.3. Extending our machine learning estimator to work for any causal

diagram compatible with Winship and Harding (2008) — such as Figure B.2 — is one possible

direction for future work. Of course, if any of the proxies Z are affected by all three (A, C, T ) the

model is no longer identified. In this case, we would need to find intermediate proxies that are

plausibly affected by only two of the three.

Finally, the front-door criterion requires stochasticity of the mediators Z.11 In other words, the

proxies Z cannot be perfectly deterministic functions of T—otherwise we’d back to some form

of multicollinearity. This connects directly to much of the discussion in our technical companion

paper. For the current paper, this motivates our requirement that any proxy variables must have

an R2 of less than 0.75 in the regression of T on Z.

While the approach we adopt relies on non-trivial assumptions, these assumptions are much

weaker than the assumptions made in most existing work that seeks to solve the age-time-cohort

problem in economics.

Note that there are other conceptual frameworks for reasoning about counterfactuals. We

could have formulated our requirements for identification in terms of the potential outcomes

framework following Imbens and Rubin (2015). This would take the form of a SUTVA assumption

on potential outcomes in terms of age combined with a “no unobserved confounders” assumption

conditional on c and z. We explore this connection in the technical companion paper.

C Intuition for Riesz Representers and Double Machine Learning

C.1 Double/Debiased Machine Learning

The machine learning prediction task (by minimizing the mean squared error) tries to estimate the

conditional expectation:

m0(a, c, z) := E[σ2
at|a, c, z].

Typically, our final machine learning model m̂(a, c, z) introduces bias to reduce the variance of the

estimator. Mechanically, this means that we do not make the in-sample prediction residuals as

small as we possibly could, given a highly flexible machine learning function class. This is usually

11We thank Lihua Lei for pointing this out.
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necessary to control overfitting and successfully generalize out of sample.

The fundamental idea behind double/debiased machine learning is to exploit the fact that

our actual estimand of interest is the slope, slope(m0)—a single scalar—which is much simpler

than the whole function m0(a, c, z). We do not need a completely unbiased estimate of the entire

function m0 (which would have prohibitively large variance). We only need an unbiased estimate

of slope(m0). This should be easier to achieve.

Above, we characterize the bias of machine learning estimators as being due to not making the

prediction residuals as small as possible. For example, while OLS produces the smallest possible

residuals among linear models, Lasso and Ridge are regularized, creating bias toward a simpler

model and resulting in larger residuals. Double/debiased machine learning cleverly addresses

this regularization bias by correcting the prediction residuals but only if they matter for the slope.

This works by adding a bias correction term to the initial estimate of the slope, slope(m̂):

slope(m̂) + E
[
∇slope(a, c, z) · (σ2

at − m̂(a, c, z)︸ ︷︷ ︸
prediction errors

)
]
. (10)

What is ∇slope(a, c, z)? It is the gradient of the slope when viewed as an operator, slope(·), that

takes a function of a, c, z such as m̂ as its input. Note that because the input to slope(·) is a function

of a, c, z, the gradient ∇slope is also a function of a, c, z. We will define this gradient more formally

in the next section. For now think of this gradient intuitively: it measures how much changing

m̂(a, c, z) at a particular value of a, c, z impacts the final estimate slope(m̂). For example, we would

expect that the observations where a is at the extremes of the age range would be more impactful

for the slope than observations in the middle of the age range. Using this interpretation, when we

do debiasing in Equation (10), we correct the residuals more if the prediction at that point is very

influential for the final slope estimate.

To understand why (10) corrects bias, notice that it takes the form of a first-order Taylor expan-

sion. The familiar Taylor approximation from elementary calculus is: f(x) ≈ f(a) + f ′(a)(x − a).

In expression (10), slope(·) corresponds to f(·), and m̂ corresponds to a. But what about x? Here

we can apply the law of iterated expectations: E[σ2
at] = E[E[σ2

at|a, c, z]] = E[m0(a, c, z)]. When we

plug this expression back into (10), we get:

slope(m̂) + E
[
∇slope(a, c, z) · (m0(a, c, z)− m̂(a, c, z))

]
.

So the debiased estimate is a first-order Taylor approximation of the true population estimand
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slope(m0), where the Taylor approximation is taken around our initial, biased machine learning

estimate, slope(m̂). Furthermore, we can compute this bias correction term even though we do

not know the true m0 in advance. There are deep reasons from empirical process theory why this

formally works and provides a “semiparametrically efficient” estimate (Kennedy, 2022). However,

this description is a simple intuitive way to think about the whole process:

1. We want to correct the residuals but only if they matter for estimating the slope.

2. One way to do this is to multiply the residuals by the “gradient of the slope with respect to

the observation”.

3. We end up with a Taylor series approximation for the true estimand, slope(m0).

C.2 “Riesz Representers” Are Gradients with Respect to Function-Valued Inputs.

In the previous section, we describe a Taylor approximation using ∇slope(a, c, z). This is the

gradient of the slope operator, slope(·), with respect to its input, a function of a, c, z. The crucial

observation is that the slope is a linear functional. For any two functions m1(a, c, z) and m2(a, c, z),

and any a, b ∈ R,

slope(am1 + bm2) = a · slope(m1) + b · slope(m2).

The gradient of a linear functional with respect to its function-valued input is called the “Riesz

representer.”

Linear functionals have a special property. Just like a linear function defined on Rd can be

written in terms of coefficients in Rd, a linear functional defined over functions m(a, c, z) can

be written in terms of “coefficients” that are themselves a function of a, c, z. This isn’t true for

completely arbitrary spaces of functions. In particular, we need the following restriction on the

functions m that we consider: E[m(a, c, z)2] < ∞. We denote the set of functions that satisfy this

condition L2. Functions in L2 have an inner product just like vectors in Rd have an inner product.

This inner product has the following form. For any f, g ∈ L2:

⟨f, g⟩ := E[f(a, c, z)g(a, c, z)].

Because the slope is a linear functional, there exist unique “coefficients” in L2 that we will denote

α0(a, c, z) such that:

⟨α0,m⟩ = slope(m), ∀m ∈ L2. (11)
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In Rd, the gradient of a linear function is equal to the coefficients in Rd. Similarly, the gradient

∇slope(a, c, z) = α0(a, c, z). Spaces of general functions that have an inner product are called

“Hilbert spaces” and the “coefficients” in these spaces are called the Riesz representer. For a

review of Riesz representers for an applied audience in epidemiology see Williams et al. (2025).

C.3 Riesz Representer for the Slope Operator

So far, we have reviewed how to debias a machine learning estimate using the Riesz representer.

However, we have discussed the Riesz representer abstractly. In this section, we present the Riesz

representer for our particular object of interest: the slope of the age profile. It turns out that the

Riesz representer for the slope in our setting has an explicit analytic form. In this section, we

present the analytic form but defer the derivation.

Define:

a⃗ := {35, ..., 50}, (12)

s :=
a⃗− ā

(⃗a− ā)⊤(⃗a− ā)
, (13)

where ā is the mean of a⃗. Let s(a) denote the entry of s corresponding to age a.

Then the Riesz representer of the slope is:

αslope(a, c, z) =
s(a)

P (T = c+ a|Z = z)
. (14)

There are two contributions to the size of αslope: the numerator s(a) and the denominator P (T =

c+ a|Z = z), the probability of T given z. Next, we will interpret these in turn.

The entries of the numerator, s(a), sum to zero with the largest magnitude values at the earliest

and latest ages. Recall that when αslope(a, c, z) is large for a given observation, then that observa-

tion is especially impactful for estimating the slope. Intuitively, the numerator reflects the fact that

the slope estimate is the most sensitive to observations with ages farthest from the mean age. In

fact, notice that from the usual simple linear regression math, if we take the inner product of s

with any other vector y of the same length, we get the slope of y.

The denominator is especially important, and provides a hint as to how proxies achieve iden-

tification. The slope is identified if and only if P (T = c+ a|Z = z) is greater than zero; otherwise

the weights can be infinite. Using the gradient intuition, if the weights are infinite, it means that

an arbitrarily small change at that data point can cause an arbitrarily large change to the slope
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estimate — this is precisely what it means to be unidentified.

Consider using a time trend as the proxy Z, i.e. Z = T . In this case there is no uncertainty

about time conditional on the proxy; P (T = c + a|Z = z) either equals 0 or 1. Therefore the

denominator in (14) is not always greater than 0 and the slope is not identified.

Proxy variables can only achieve identification by introducing some uncertainty into the rela-

tionship between Z and T . First, notice that this motivates our use of blocked cross-validation.

Consider trying to estimate P (T = c + a|Z = z) from the data. Without sample splitting, for

continuous valued proxies there is usually a bijective map between Z and T . E.g., consider taking

Z to be inflation. Inflation in the US in the year 2005 was 3.39275. There is no other year in which

inflation takes on precisely this value, so without any sort of sample splitting, we could construct

a map that predicts T given inflation with perfect accuracy. P (T = c + a|Z = z) would again

always be 0 or 1, and the slope would be unidentified. Instead, if we always split the observations

into train and test folds by years, then it is generally not possible to perfectly predict T given Z

out-of-sample. As a result P (T = c + a|Z = z) will be greater than 0, and the slope becomes

identified.

Second, notice that this means that proxies that are approximately but not perfectly trending,

such as GDP, yield very poor identification. When Z is GDP, then P (T = c + a|Z = z) is always

close to 0 or 1, even when sample splitting by year. All identification comes from the devia-

tions around the trend, and these observations correspond to large values of the Riesz representer.

In other words, the estimate of the slope is driven by these deviations from the trend. During

debiasing, the Riesz representer is applied as a set of weights, and reweighting by large values

translate into large standard errors — correctly reflecting poor identification. For time series like

unemployment or inflation, it is generally harder to predict T as a function of Z, resulting in a

P (T = c + a|Z = z) that is strictly bounded away from 0. In this case the Riesz representer does

not take on extremely large values, and we achieve better identification.

Therefore, the discussion above based on (14) motivates our choices to exclude proxy variables

that are very strongly trending (with an R2 > 0.75 in the regression of T on that proxy), and to

perform cross-validation by splitting whole years into train and test folds.

Finally, note that instead of minimizing the Riesz loss as described in the previous section,

we could instead estimate the conditional density P (T |Z) and then plug in our estimate into (14)

to compute the Riesz representer for debiasing. This has two problems. First, conditional density

estimation becomes statistically very challenging as the dimensionality of Z grows. Second, taking

the inverse in (14), s(a)/P̂ (T = c+a|Z = z), has undesirable properties. Even if P̂ (T = c+a|Z = z)
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can be estimated well, we could end up with a poor estimate of 1/P̂ (T = c + a|Z = z) due to

instability for small values of P̂ (T = c+a|Z = z). For these reasons, we prefer to directly estimate

the Riesz representer using the Riesz loss. However, (14) provides important intuition about the

underlying structure of the identification problem.

C.4 Estimating the Riesz Representer

Finally, we comment on how we estimate α̂. We discussed above how α0 for the slope functional

has a closed-form expression. Note that in the expression (14), the only unknown quantity is the

conditional probability in the denominator — P (T |Z). One simple way to estimate α0, would be

to first get an estimate of this probability, P̂ (T |Z), and then to compute the “plug-in” estimate:

α̂(a, c, z) =
s(a)

P̂ (T = c+ a|Z = z)
.

This strategy is called “inverse probability weighting” and is used in Chernozhukov et al. (2018).

However, the recent literature on debiased machine learning has emphasized that this is usu-

ally not a reliable way to estimate the Riesz representer—see for example Ben-Michael et al. (2021)

and Chernozhukov et al. (2022). Among other issues, inverting the estimated probabilities means

that when P (T |Z) is close to zero, very small estimation errors can lead to enormous estimation

errors in α̂.

Instead in this paper, we adopt the “Riesz loss” from Chernozhukov et al. (2022). The true

Riesz representer α0 is the unique minimizer of the optimization problem:

min
α∈L2

{E[α(a, c, z)2 − 2 · slope(α)]}. (15)

Minimizing this loss is equivalent to minimizing the squared-loss between α and α0:

min
α∈L2

E[(α(a, c, z)− α0(a, c, z))
2]

= min
α∈L2

E[α(a, c, z)2 − 2 · α(a, c, z)α0(a, c, z) + α0(a, c, z)
2]

= min
α∈L2

E[α(a, c, z)2]− 2 · E[α(a, c, z)α0(a, c, z)]

= min
α∈L2

E[α(a, c, z)2]− 2 · ⟨α, α0⟩

= min
α∈L2

E[α(a, c, z)2 − 2 · slope(α)],
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where we applied the key property of the Riesz representer (11) for:

slope(α) = ⟨α, α0⟩,∀α ∈ L2.

Finally, we connect this optimization problem back to the original intuition, where we referred

to the Riesz representer as the gradient ∇slope(a, c, z). If we take the first order condition of the

Riesz loss optimization problem (15), we get that the solution α∗ must satisfy:

2α∗(a, c, z)− 2∇slope(a, c, z) =⇒ α∗(a, c, z) = ∇slope(a, c, z).

D Details for Debiased Machine Learning

D.1 Fitting the Outcome Models

As we discuss in section 5.1, we select 10 proxies that have the strongest relationship with the

outcome variable based on a univariate cross-validated kernel ridge regression model. We then

train our models on all combinations of these ten chosen candidate features. For each sublist,

we also include either age and cohort trends or age and cohort dummies. We therefore train our

models on 2× (210 − 1) = 2046 different feature matrices for each country.

For each feature matrix, we remove each column’s median and rescale by the interquartile

range using sklearn’s RobustScaler. For the dummy variable columns we center using the mean

and rescale with the standard deviation instead. We train various models over a range of hyper-

parameters. We use log-spaced grids for hyperparameters. Denote an evenly spaced grid of n

elements between endpoints x0 and x1 as: g(x0, x1, n). Let log grid(x0, x1, n) be the grid contain-

ing 10 to the power of i for i ∈ g(log x0, log x1, n). We train the following models:

• Ridge regression with hyperparameters λ ∈ log grid(1e-7, 20, 100)

• Lasso with hyperparameters λ ∈ log grid(1e-7, 20, 100)

• Kernel ridge regression with λ ∈ log grid(1e-7, 2e-1, 20), γ ∈ log grid(1e-6, 1e-1, 10), with

both RBF and Laplacian kernels.

We use an evenly spaced grid in logs because the variance can grow very rapidly as the reg-

ularization parameters near 0, so we want the grid points to be closer together near 0. This is

standard practice in machine learning.
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Finally, note that we choose relatively coarse grids with only 100 different combinations of

hyperparameters per method. This saves computation in our initial pass that performs this pro-

cedure on different combinations of feature matrices. However, after we have found the best

combination of feature matrix and hyperparameter for ridge/lasso/KRR, we then go back and

refine the hyperparameters on only these feature matrices with finer grids containing 10x more

points. Again, this coarse-to-fine strategy is standard practice in machine learning.

D.2 The Choice of Machine Learning Estimators

As we describe in Section 5.1, we fit each machine learning algorithm (ridge, kernel ridge, etc) on

every combination of features. With unlimited compute, we would run any conceivable machine

learning algorithm, including tree-ensembles and neural networks, on each of the feature matrices.

However, in practice, we find that given our very small number of sample sizes (in the 100s)

more complicated methods like tree-ensembles and neural networks have two problems: (1) they

perform poorly across the board compared to simpler models, and (2) they take much longer to

run. Therefore, we exclude these more complicated models from our full run.

To demonstrate these two claims, in this section we present results with tree-ensembles and

neural networks on the GRID data for the United States. We begin by selecting the features that

yielded in the best results under our main specification. These are: Age, Cohort, Square-root of

Age, Log Oil Prices, Lagged Log Oil Prices, and Lagged Log Industrial Production Squared. The

best performing model from our main specification is Kernel Ridge Regression, using the Lapla-

cian kernel with bandwidth 0.0328 and regularization penalty 1.86× 10−5. This model achieves a

cross-validated root mean squared error of 0.013. We compare this result to several tree and neural

network specifications in Table D.1.

Table D.1: Comparison of Tree and Neural Network Models to Kernel Ridge Regression

Machine Learning Method Cross-validated RMSE
Kernel Ridge Regression 0.013

Random Forest 0.022
Gradient-Boosted Trees 0.021
Multilayer Perceptron 0.111

RealMLP 0.021

Note: Inputs to the models are: Age, Cohort, Square-root of Age, Log Oil Prices, Lagged Log Oil Prices, and
Lagged Log Industrial Production Squared. For cross-validation, we use year-blocked splits of 8 contiguous
years.

The much simpler kernel ridge regression method achieves nearly half the RMSE of the more
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complicated models. Note that the typical neural network used for regression in small datasets,

the Multilayer Perceptron (MLP) performs particularly poorly. RealMLP (Holzmüller et al., 2024)

is a recent improved architecture for small datasets that incorporates an extensive series of tricks

and transformations — even this state-of-the-art neural architecture performs poorly in this setting

compared to kernel ridge.

Finally, kernel ridge regression tends to suffer in high dimensions. This is one reason why we

have to iterate through all possible subsets of the original features to find the best model. Tree

ensembles and neural networks on the other hand typically perform well with high-dimensional

inputs. Therefore, we also test these models using all available features including all transforma-

tions of age, cohort, and all proxy variables. For the GRID US data, this is 53 features. The results

are presented in Table D.2

Table D.2: Tree and Neural Network Models with High-Dimensional Input

Machine Learning Method Cross-validated RMSE
Random Forest 0.023

Gradient-Boosted Trees 0.024
Multilayer Perceptron 0.722

RealMLP 0.025

Note: Models are trained using all 53 input features (excluding only those proxies with an R2 > 0.75 in the
regression of calendar year on that proxy). For cross-validation, we use year-blocked splits of 8 contiguous years.

Reflecting the difficulties of the very small sample size, the results are always worse than what

was achieved in the more carefully selected subset of features in Table D.1.

D.3 Fitting the Weighting Models

In this section, we provide details on how we estimate the weights ŵ. In general, these weights

are found by minimizing the loss from Chernozhukov et al. (2022):

min
w∈F

{
E[w(A,C,Z)2 − 2 · slope(w)]

}
. (16)

In the most general case, F can be an arbitrary function class. Different choices of F will results

in different estimates with different properties. For the applications used in Chernozhukov et al.

(2022), F is the set of linear functions whose coefficients are within an ℓ1-norm ball — just as in

the Lasso. See Chernozhukov et al. (2022) for details on the “Lasso” type weights.

In this work, we consider two function classes that can be solved analytically: linear func-

tions with coefficients in an ℓ2-norm ball (ridge weights), and functions within an RKHS ball
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(kernel ridge weights). Access to a closed-form solution offers substantial computational advan-

tages. These ridge-type estimators of the Riesz representer have been studied theoretically in

Singh (2021).

In the subsections below, we will walk through the derivation of the closed-form solutions for

ridge weights and kernel ridge weights.

But other than the loss function, we estimate the weights with exactly the same machine learn-

ing setup as for our basic prediction problem. This includes both the choice of features, and using

blocked cross-validation for model selection. We train models for the weights with the following

hyperparameters:

1. Ridge weights with δ ∈ log grid(1e-7, 5e-1, 25).

2. Kernel Ridge weights with with δ ∈ log grid(1e-7, 5e-1, 20), γ ∈ log grid(1e-6, 1e-1, 10), with

the RBF kernel.

As in Appendix D.1, we refine the hyperparameters on a finer grid for the best performing

feature matrix / model combinations.

D.3.1 Linear Weights

First, we consider linear function classes with ℓ2-norm regularization, aka Ridge for weighting.

Write X(A,C,Z) ∈ Rn×d for a design matrix with a row for each observation, and columns for

each feature. For example, we might have d = 3 with simple linear features A,C, and Z. Or

we might have d = 5 with features A,A2, C, C2, Z. Note that we have written X as a function of

A,C,Z. This will be important later when computing the optimal weights. When this dependence

on A,C,Z is not important for the context, we will simply write X for brevity. Without loss of

generality, we assume that X has mean zero, otherwise we can just recenter first.

The loss in the linear case is:

min
β∈Rd

{ 1
n
β⊤X⊤Xβ − 2slope(Xβ) + δβ⊤β

}
, (17)

where δ is a hyperparameter. To get the optimal weights, we will exploit the fact that because

slope is a linear functional, there must be a way to write the slope as a linear function of β. We

derive this form next.

Recall that our estimand is the slope of the age profile. Then by straightforward OLS math,

the slope of the age profile is a linear combination of the elements of the age profile. In particular,
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recall that the value of the age profile at age a is σ2
a = E[m(a,C, Z)]. Let σ2

a⃗ be the full age profile

as a vector whose elements are σ̂2
a. Furthermore, define a⃗ := {amin, ..., amax} and let ā denote the

mean of a⃗. Then, we have:

slope =
(⃗a− ā)⊤σ2

a⃗

(⃗a− ā)⊤(⃗a− ā)
.

Denote:

s :=
(⃗a− ā)

(⃗a− ā)⊤(⃗a− ā)
.

Notice that for m of the form Xβ we have σ2
a = E[β⊤X(a,C, Z)]. Putting this all together:

slope(Xβ) = s⊤E[β⊤X (⃗a,C, Z)]

= β⊤E[s⊤X (⃗a,C, Z)],

where E[s⊤X (⃗a,C, Z)] =: X̄cf ∈ Rd are the average “counterfactual features,” to borrow the lan-

guage from Chernozhukov et al. (2020). Not that when we are solving for the weights in practice,

the expectation in the definition of X̄cf will be the sample average.

Now we are ready to get a closed-form solution to Equation (17). Using the first order condi-

tions, we have the coefficients for the optimal weights:

β∗ = n(X⊤X + δI)−1X̄cf.

These closed-form coefficients can be computed quickly in just a few lines of code. The first

term, (X⊤X + δI)−1 is just the standard inverse regularized covariance matrix from ridge regres-

sion. The only new term we must compute is X̄cf. For each observation, we have to compute

the counterfactual features X(a,Ci, Zi) and take their inner product with s. Then we just take the

sample average of the result.

The final estimated weighting function is:

ŵ(x) = x⊤β∗.

D.3.2 Kernel Weights

We adopt the same setup with a feature matrix X as for linear weights, but now we will solve

the weighting optimization problem over an Reproducing Kernel Hilbert Space (RKHS) — see
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Scholkopf and Smola (2018) for a review. We will broadly adopt the setup from Hirshberg et al.

(2019); Singh (2021); Bruns-Smith et al. (2023). Let H be a possibly-infinite-dimensional RKHS

with kernel K. Let ∥ · ∥H denote the norm of H. Let K be the matrix with entries K(xi, xj), where

xi, xj are the ith and jth entries of X . Then the weighting problem is:

min
a∈Rd

{ 1
n
α⊤K⊤Kα− 2slope(Kα) + δα⊤Kα

}
where

slope(Kα) = α⊤K̄cf,

and the counterfactual kernel matrix K̄cf has a closed-form. Define Ka to be the matrix with entries

K(xi, x
′
j) where xi is the ith row of X(A,C,Z) and x′j is the (counterfactual) jth row of X(a,C, Z).

Define K̄a ∈ Rn to be the average for each row of Ka. Define K̄a⃗ ∈ Rn×nage to be the matrix whose

columns are the K̄a for each a. Then:

K̄cf := K̄a⃗s,

for s defined as in Appendix D.3.1. This follows directly from algebra using the definition of the

slope applied to the kernel ridge model with dual coefficients α.

There is a closed-form solution to the optimization problem:

α∗ = n(KTK + δK)−1K̄cf.

For a single point x, define Kx as the vector with entry K(xi, x) for each row xi in X . Then the

resulting estimated weighting function is:

ŵ(x) = K⊤
x α∗.

D.4 Standard Errors for the Slope

We now describe how to compute asymptotic normal standard errors for the debiased machine

learning estimate. We do this in the usual way taken directly from Chernozhukov et al. (2022), but

give details here for concreteness.

Let slope(m̂, c, z) denote the slope of model m̂ evaluated at a fixed c and z. In other words,

we take the age profile at a fixed c and z, m̂(35, c, z), m̂(36, c, z), ..., m̂(50, c, z), and then com-

pute the slope of the best fit line through this profile. Then by linearity, we have slope(m̂) =
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E[slope(m̂, c, z)].

Then our debiased point estimate using predictive model m̂ and weighting model ŵ can be

written:

θ̂dr :=
1

n

n∑
i=1

{
slope(m̂, ci, zi) + ŵ(ai, ci, zi)(σ

2
i − m̂(ai, ci, zi))

}
(18)

This is a sample average, and so the asymptotic variance is estimated in the usual way:

V̂dr :=
1

n

n∑
i=1

{(
slope(m̂, ci, zi) + ŵ(ai, ci, zi)(σ

2
i − m̂(ai, ci, zi))− θ̂dr

)2}

and our asymptotic normal standard error is
√
V̂dr/n .

This contrasts with the biased machine learning plug-in estimator:

θ̂ml :=
1

n

n∑
i=1

{
slope(m̂, ci, zi)

}

and the naive standard errors that would result from erroneously assuming that θ̂ml is unbiased:

V̂ml :=
1

n

n∑
i=1

{(
slope(m̂, ci, zi)− θ̂ml

)2}

The standard errors using V̂ml will not generally yield a confidence interval with the desired cov-

erage, as we illustrate in simulation in Appendix G.

Note that the debiased variance is inflated by the inclusion of the weights and residuals. Ig-

noring cross-terms, we can use the following rough bound for intuition:

V̂dr ≈ V̂ml +
1

n

n∑
i=1

ŵ(ai, ci, zi)
2(σ2

i − m̂(ai, ci, zi))
2

≤ V̂ml +

(
n∑

i=1

ŵ(ai, ci, zi)
2

)
︸ ︷︷ ︸

size of ŵ

(
1

n

n∑
i=1

(σ2
i − m̂(ai, ci, zi))

2

)
︸ ︷︷ ︸

MSE of m̂

.

In other words, the difference between the debiased confidence interval and the naive confidence

interval depends roughly (1) the squared sum of the weights, and (2) the mean squared error of

the predictor m̂. If the predictor m̂ were perfect, we wouldn’t need to perform any bias correction.

If the predictor is imperfect, then intuitively the weights ŵ control how the uncertainty from the
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predictions passes through to our uncertainty about θ̂dr.

D.5 Cross-Fitting

Notice that the added bias correction term in Equation (18) takes the form:

1

n

n∑
i=1

{
ŵ(ai, ci, zi)(σ

2
i − m̂(ai, ci, zi))

}
. (19)

When the prediction residuals σ2
i − m̂(ai, ci, zi) are small, then the impact of bias correction is also

small. This can be an issue if we use the data to fit the model and then subsequently use the same

data to calculate the residuals. In the worst-case, we could severely overfit, driving the residuals to

zero. In practice, we select m̂ using blocked cross-validation, so we will never drive the residuals

to zero. However, there could be a concern that the residuals would still be too small, since we

use the same data to select m̂ and to compute the residuals. This has been an area of active debate

in the debiased machine learning literature. Theoretically, when the machine learning algorithm

used to select m̂ satisfies a “Donsker condition” (van der Vaart and Wellner, 2023), then reusing the

samples is not a problem. However, the Donsker condition essentially requires that the algorithm

cannot be too flexible, which may be violated by many modern machine learning tools. Therefore

many debiased machine learning papers (e.g. see Chernozhukov et al., 2018) suggest using “cross-

fitting”, where the models are trained in folds and then applied pseudo-out-of-sample as with

cross-validation. A recent simulation study in Bach et al. (2024) finds that using the whole sample

or doing cross-fitting perform roughly the same, but to guarantee that our confidence intervals are

valid, we choose to use cross-fitting for our final estimates. Unfortunately, this does make notation

a bit messier, and so we suppress the details from the main text and present them below.

We define folds according to our blocked cross-validation scheme. The test folds are observa-

tions from within blocks of 8 contiguous years. Recall from Section 5.2 that we do not use a single

fixed partition into folds. Instead we consider each possible combination of 8 contiguous years as

a test fold — a sliding window.

Denote each of these test folds ℓ. Let L be the total number of folds. If B is the block size, then

L = nyear − B + 1 using our sliding window folds. Let Iℓ denote the indices of the observations

within fold ℓ and let I¬ℓ denote the indices of observations outside of fold ℓ. Let m̂ℓ and ŵℓ be the

predictors and weights fit on the data in I¬ℓ. Let Xi := {Ai, Ci, Zi} denote the data for observation

i.
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Then the cross-fit point estimate is:

θ̂dr-cf :=
1

L

L∑
ℓ=1

1

|Iℓ|
∑
i∈Iℓ

{
slope(m̂ℓ, ci, zi) + ŵℓ(ai, ci, zi)(σ

2
i − m̂ℓ(ai, ci, zi))

}
, (20)

and the cross-fit variance is:

V̂dr-cf :=
1

L

L∑
ℓ=1

1

|Iℓ|
∑
i∈Iℓ

{(
slope(m̂, ci, zi) + ŵ(ai, ci, zi)(σ

2
i − m̂(ai, ci, zi))− θ̂dr-cf

)2}
. (21)

Finally, we compute the standard errors:

ŝtd errcf =

√
V̂df-cf/n . (22)

D.6 Clustered Standard Errors

Our blocked cross-validation scheme splits the data by whole years. This guarantees that obser-

vations from the same year (which are strongly dependent) do not simultaneously appear in both

a training set and test set. For the same reason, we also extend (21) to handling clustering at the

year level.

Let Iℓ,t be the index set of observations in year t and fold ℓ. We compute the squared cluster

sums:

g2ℓ,t =

∑
i∈Iℓ,t

(
slope(m̂, ci, zi) + ŵ(ai, ci, zi)(σ

2
i − m̂(ai, ci, zi))− θ̂dr-cf

)2

Let g2t denote the average of g2ℓ,t, averaging over all folds ℓ that contain t.

Then our estimate of the asymptotic variance (including finite sample correction for our num-

ber of clusters, nyear) is:

V̂dr-cluster :=

(
nyear

nyear − 1

)
1

n

∑
t

g2t .

E Debiased Estimate of the Age Profile

E.1 Estimating the Full Age Profile

In the main text and in Appendix D, we have discussed estimation of the slope of the age profile.

Beyond estimating the slope, we can also debias each point σ2
a on the age profile individually to
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obtain a full debiased age profile. For fixed values of the hyperparameter and proxies used for

the weights, the two are equivalent. That is, if we were to debias each point individually, and

then compute the slope of the resulting age profile, this is numerically equivalent to the debiased

estimate of the slope.

We use this fact to plot a corresponding debiased age profile for each of our slope point esti-

mates — these are what we plot in Figure 5 and Figure 7, and what we use to get the “Debiased

ML” columns of Table 2 and Table 3. We take the cross-validated kernel weighting hyperparame-

ters and proxy variables that are selected for the slope, and use them to debias each point on the

age profile individually like so:

Consider a fixed point on the age profile. For concreteness, we’ll use σ2
35, the value of the age

profile at age 35. The weighting problem for debiasing σ2
35 is:

w∗
35 = argmin

w

{
E[w(a, c, z)2 − 2 · w(35, c, z)]

}
. (23)

We can then run exactly the same debiased machine learning procedure that we outlined for the

slope, but for σ2
35. The prediction problem for σ2

at is the same, so we will use the same predictive

model, m̂. If we have a weighting model ŵ35, the resulting debiased estimate of the age profile at

age 35 is:

σ̂2
35 :=

1

n

n∑
i=1

{
m̂(35, ci, zi) + ŵ35(ai, ci, zi)(σ

2
i − m̂(ai, ci, zi))

}
(24)

The slope of the resulting profiles are numerically identical to the reported slope estimates in

Table 1 and Table 4.

E.2 Proof of the Equivalence

For those interested in the details, we now provide a derivation of the equivalence, described

in the previous section, between the debiased estimate of the slope and the slope of a debiased

estimate of the age profile.

We will write a⃗ to indicate we mean the vector of values we get from setting age equal to

35, 36, ..., 50. So σ̂2
a⃗ is the whole debiased estimated age profile following the form of σ̂2

35 in Equa-
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tion (24). Using this notation, the slope through this estimated age profile would be:

slope(σ̂2
a⃗) = slope

(
1

n

n∑
i=1

{
m̂(⃗a, ci, zi) + ŵa⃗(ai, ci, zi)(σ

2
i − m̂(ai, ci, zi))

})

=
1

n

n∑
i=1

{
slope(m̂, ci, zi) + slope(ŵa⃗(ai, ci, zi))(σ

2
i − m̂(ai, ci, zi))

}
. (25)

We are relying on the fact that the slope is calculated with a linear combination, and therefore

can move inside the sum. Compare Equation (25) to the debiased point estimate for the slope

from Equation (18). The only difference is that while Equation (18) has a single weighting model

for the slope ŵ, in Equation (25), we have the combination of individual weighting models,

slope(ŵa⃗(ai, ci, zi)).

These turn out to be equivalent in finite sample for the linear and kernel weighting models we

consider in Appendix D.3. We provide the derivation for the linear case below (the argument for

the kernel setting is virtually identical).

We first drive the solution to the linear weighting loss for a fixed point on the age profile (again,

we use age 35 as an example). Let X35 denote the covariates where all ages are set to equal 35, and

write X̄35 ∈ Rd for the sample average of the columns of X35. Then the weighting problem is:

min
β∈Rd

{
1

n
β⊤X⊤Xβ − 2X̄35β + δβ⊤β

}
. (26)

Taking the derivative with respect to β, the solution is:

β∗
35 = n(X⊤X + δI)−1X̄35,

with corresponding weights ŵ35 = Xβ∗
35. Then following the same argument from Appendix D.3.1,

for

s :=
(⃗a− ā)

(⃗a− ā)⊤(⃗a− ā)
,

the slope through the weights are:

slope(Xβ∗
a⃗) = s⊤(Xβ∗

a⃗)

= ns⊤(X(X⊤X + δI)−1X̄a⃗)

= nX(X⊤X + δI)−1(s⊤X̄a⃗)

= n(X⊤X + δI)−1X̄cf,
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which is exactly the solution to the weights for the slope derived in Appendix D.3.1.

F GMM Details

In this section, we describe in detail how we estimate the persistence parameter ρ using GMM.

We use our estimated age profiles as inputs to GMM estimation for the parameters of the

income process:

yi,a = αi + zi,a + ϵi,a (27)

zi,a = ρzi,a−1 + ηi,a. (28)

Recall that we assume for simplicity that the processes are centered around zero — E[yi,a] =

E[zi,0] = E[αi] = E[ϵi,a] = E[ηi,a] = 0. We denote the variances of the random variables as σ2
α, σ

2
ϵ ,

and σ2
η . We write the initial permanent variance as σ2

z0 := Var[zi,0].

The relationship between the age profile and the model parameters is as follows:

σ2
a = E[y2i,a]

= σ2
α + E[z2i,a] + σ2

ϵ

= σ2
α + (ρ2)aσ2

z0 +
a∑

k=1

(ρ2)a−kσ2
η + σ2

ϵ . (29)

Note that we begin indexing at a = 0, which corresponds to age 35 in our baseline working age

specification.

The full set of parameters ρ, σ2
α, σ

2
ϵ , σ

2
η, and σ2

z0 are not identified from the age profile alone —

we would need to use the covariance moments. However, ρ is pinned down by the curvature of

the age profile.

We estimate ρ jointly with σ2
η, σ

2
z0, and σ2

α + σ2
ϵ using the scipy.optimize library in python. We

minimize the (equally weighted) sum of squares of the errors to the estimated data moments, i.e.

the age profile, σ̂2
a. For computational convenience, we impose the bounds: σ2

η, σ
2
z0, σ

2
ϵ +σ2

α ∈ [0, 2]

and ρ ∈ [0.01, 2]. These constraints never bind. We repeat the solve 200 times using uniform

random initializations of the parameters within the bounds. The estimates for ρ are highly stable

for every dataset.

In the case where we estimate the age profile σ̂2
a using our debiased machine learning method

(with predictive model m̂ and weighting model ŵ), then we can also get a valid confidence interval
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for the GMM estimate of ρ. We do this using the standard computation (see for example, Cameron

and Trivedi (2005)):

V̂gmm = (D⊤D)−1D⊤ΣD(D⊤D)−1,

where D ∈ Rnage×4 is the Jacobian of the GMM errors with respect to the parameters evaluated at

the GMM solution, and Σ ∈ Rnage×nage is the covariance of the errors. We numerically approximate

D with a centered second-order finite difference calculation.

For estimating Σ, we make sure to propagate the uncertainty involved in estimating the age

profile using the debiased machine learning estimating equation. Each individual element of the

age profile is estimated using Equation (24). As described in Appendix E, we estimate the individ-

ual weights using the same model we selected via blocked cross-validation for the slope weights.

Let σ2
gmm ∈ Rnage denote the age profile implied by plugging in the GMM-estimated parameters

into Equation (29). Then the GMM error vector calculated at a single observation i are:

erri := m̂(⃗a, ci, zi) + ŵa⃗(ai, ci, zi)(σ
2
i − m̂(ai, ci, zi))− σ2

gmm,

with erri ∈ Rnage , and the error covariance matrix is:

1

n

n∑
i=1

errierr⊤i .

Let the diagonal entry of V̂gmm that corresponds to the persistence parameter be denoted V̂ρ. Then

the standard errors for our estimated persistence are
√

V̂ρ/n . In practice, we do the variance and

standard error calculations using the cross-fitting procedure in Appendix D.5 to avoid underesti-

mating the uncertainty.

Finally, note that we can obtain clustered standard errors by correcting for clustering in the

construction of Σ. Let Iℓ,t be the index set of observations in year t and fold ℓ. We compute the

cluster sums:

gt =
∑
ℓ

∑
i∈Iℓ,t

erri.

Let G be the matrix in Rnyear×nage whose rows are the gt for each year. Let A be a diagonal matrix

with a row for each year, where the diagonal element is the number of folds in which that year

appears.
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Then the clustered error covariance is:

Σ =

(
nyear

nyear − 1

)
1

n
G⊤A−1G.

The matrix A corrects for double counting of observations across folds (exactly analogous to how

we averaged g2t,ℓ across folds in Appendix D.6). We then compute V̂gmm as above.

G Simulation Study

We perform a simulation study to validate our debiased proxy machine learning methodology. In

this study we illustrate (1) the role of the proxy variables in identification, and (2) the importance

of the debiasing step for obtaining a valid confidence interval. A key concern is that regularized

machine learning might systematically yield a small value for the slope, and perhaps that drives

our main results. Therefore, we construct a simulation that serves as a kind of placebo test. As

in the US data, the age-cohort fixed effect estimate is larger and the age-year fixed effect estimate

is smaller. However, in our simulation, the larger value is actually the truth, and we want our

debiased proxy machine learning approach to reliably estimate it. This way we can demonstrate

that our estimator doesn’t just mechanically pick the smaller value.

We use a data-generating process (DGP) that is calibrated to the US GRID data. we use the

ages and years from the real data. We choose a fixed value for the age slope of 0.009, chosen to

be higher value for the slope. We then consider the residual after accounting for this age slope:

rat := σ2
at − 0.009 · a. We use kernel ridge regression to regress rat on cohort and the selected

proxies for grid, log oil price, lagged log oil price, and lagged log industrial production squared.

Call the resulting predictive model f(c, zt).

For each simulation draw, we redraw the proxies zt and the outcomes σ2
at, resulting in a new

dataset with n = 682 observations. We redraw the proxies by adding random iid noise to the

original proxies. The standard deviation of the noise is set to be 1/4th the standard deviation

of the corresponding original proxy variable. For non-negative proxies we use an exponential

distribution for the noise, for all others we use a normal distribution. We redraw the outcomes as:

σ2
at = 0.009 · a+ f(c, zt) + νat,

where νat is mean zero iid normal noise with standard deviation 0.006 — calibrated to match the

in-sample R2 in the real data.
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We run our proxy machine learning methodology with kernel ridge for both the predictive and

weighting models, selecting the best performing model with blocked cross-validation, as we do

with the real data. We compute the debiased point estimate and confidence interval as described

in the main text. For illustrative purposes, we also compute a naive confidence interval for the

machine learning estimate without debiasing.

We repeat this process for 2000 draws. We summarize the results in Table G.1. Notice that the

biased ML estimate catastrophically undercovers: in 0 out of 2000 draws does the naive confidence

interval cover the true slope. By contrast, our debiased procedure achieves coverage of 96.6% —

in this simulation we actually over-cover slightly. We achieve this improved coverage in part due

to a full 10x decrease in bias.

Table G.1: Simulation Study Results

Estimator Bias Coverage
Debiased Machine Learning 0.0003 96.6%

Biased Machine Learning 0.0034 0.0%
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H Additional Results

H.1 Age Profile using the PSID

Figure H.1: Age Profile of Cross-Sectional Income Variance in the US
Note: The figure plots the estimated age profile of the cross-sectional variance of income for three models using
PSID data.

H.2 Persistence of Income Shocks Across Countries

Table H.1: International Persistence, ρ.

Country Years Age-Cohort Age-Year Biased ML Debiased ML
Argentina 1996-2015 0.990† 0.955 0.999† 0.912± 0.107

Brazil 1993-2018 0.994† 0.980 0.999† 0.850± 0.240

Canada 1996-2016 0.952 0.909 0.913 0.910± 0.019

Denmark 1996-2016 0.991 0.979 0.984 0.989± 0.009

France 1996-2016 0.955 0.938 0.953 0.949± 0.024

Germany 2001-2016 0.999 1.012 0.995 0.996± 0.001

Italy 1996-2016 0.980 0.998† 0.815 0.841± 0.225

Mexico 2005-2019 0.740 0.937 0.778 0.853± 0.031

Norway 1996-2017 0.994 1.003 0.996 0.995± 0.002

Spain 2005-2018 1.001 0.973 1.000 0.76± 11.85

Sweden 1996-2016 0.997† 0.974 0.961 0.01± 1238

USA 1998-2019 0.934 0.878 0.882 0.854± 0.027

Note: The table presents results on the persistence of income shocks—ρ in Section 3—for the twelve countries we
have data for in GRID. Items with † indicate that the slope is negative. See the note for Table 1 for more detail.
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H.3 Comparing In-Sample Fit for Fixed Effects

Data Age FE Age Year FE Age Cohort FE Year Cohort FE All FE
PSID 1978-2019 0.168 0.357 0.496 0.535 0.551
PSID 1998-2019 0.269 0.361 0.563 0.561 0.598

Table H.2: PSID In-Sample FE Fit

Data Age FE Age Year FE Age Cohort FE Year Cohort FE All FE
Argentina GRID 0.149 0.941 0.828 0.956 0.983
Brazil GRID 0.350 0.971 0.962 0.973 0.994
Canada GRID 0.749 0.905 0.856 0.950 0.980
Denmark GRID 0.783 0.969 0.954 0.663 0.986
France GRID 0.643 0.825 0.823 0.800 0.942
Germany GRID 0.632 0.906 0.920 0.507 0.984
Italy GRID 0.112 0.927 0.861 0.962 0.972
Mexico GRID 0.921 0.992 0.966 0.883 0.998
Norway GRID 0.745 0.939 0.942 0.484 0.972
Spain GRID 0.228 0.963 0.455 0.953 0.980
Sweden GRID 0.760 0.965 0.974 0.519 0.993
USA GRID 0.875 0.980 0.941 0.912 0.995

Table H.3: Grid In-Sample FE Fit

53


	Introduction
	Data on Income
	How Big Is the Permanent Component of Lifecycle Income Risk?
	Proxying for Time Effects
	Our Methodology: Debiased Proxy Machine Learning
	Proxies, Features, and Models
	Model Selection with Blocked Cross-Validation
	Computing the Slope of the Age Profile
	Debiased Machine Learning and Standard Errors

	Results
	Results for the United States
	Results for Twelve Countries

	Conclusion
	Data
	GRID US
	PSID following GRID
	Grid International
	Proxy Variables

	Proxy Assumptions
	The Mechanism-Based Approach
	Our Approach: A Simple Proxy Assumption

	Intuition for Riesz Representers and Double Machine Learning
	Double/Debiased Machine Learning
	``Riesz Representers'' Are Gradients with Respect to Function-Valued Inputs.
	Riesz Representer for the Slope Operator
	Estimating the Riesz Representer

	Details for Debiased Machine Learning
	Fitting the Outcome Models
	The Choice of Machine Learning Estimators
	Fitting the Weighting Models
	Linear Weights
	Kernel Weights

	Standard Errors for the Slope
	Cross-Fitting
	Clustered Standard Errors

	Debiased Estimate of the Age Profile
	Estimating the Full Age Profile
	Proof of the Equivalence

	GMM Details
	Simulation Study
	Additional Results
	Age Profile using the PSID
	Persistence of Income Shocks Across Countries
	Comparing In-Sample Fit for Fixed Effects


